Regulation of Urea Transporters by Tonicity-responsive Enhancer Binding Protein
نویسندگان
چکیده
Urea accumulation in the renal inner medulla plays a key role in the maintenance of maximal urinary concentrating ability. Urea transport in the kidney is mediated by transporter proteins that include renal urea transporter (UT-A) and erythrocyte urea transporter (UT-B). UT-A1 and UT-A2 are produced from the same gene. There is an active tonicity-responsive enhancer (TonE) in the promoter of UT-A1, and the UT-A1 promoter is stimulated by hypertonicity via tonicity-responsive enhancer binding protein (TonEBP). The downregulation of UT-A2 raises the possibility that TonEBP also regulates its promoter. There is some evidence that TonEBP regulates expression of UT-A in vivo; (1) during the renal development of the urinary concentrating ability, expression of TonEBP precedes that of UT-A1; (2) in transgenic mice expressing a dominant negative form of TonEBP, expression of UT-A1 and UT-A2 is severely impaired; (3) in treatment with cyclosporine A, TonEBP was significantly downregulated after 28 days. This downregulation involves mRNA levels of UT-A2; (4) in hypokalemic animals, downregulation of TonEBP contributed to the down regulation of UT-A in the inner medulla. These data support that TonEBP directly contributes to the urinary concentration and renal urea recycling by the regulation of urea transporters.
منابع مشابه
Urea inhibits hypertonicity-inducible TonEBP expression and action.
Tonicity-responsive genes are regulated by the TonE enhancer element and the tonicity-responsive enhancer binding protein (TonEBP) transcription factor with which it interacts. Urea, a permeant solute coexistent with hypertonic NaCl in the mammalian renal medulla, activates a characteristic set of signaling events that may serve to counteract the effects of NaCl in some contexts. Urea inhibited...
متن کاملDownregulation of renal TonEBP in hypokalemic rats.
Hypokalemia causes a significant decrease in the tonicity of the renal medullary interstitium in association with reduced expression of sodium transporters in the distal tubule. We asked whether hypokalemia caused downregulation of the tonicity-responsive enhancer binding protein (TonEBP) transcriptional activator in the renal medulla due to the reduced tonicity. We found that the abundance of ...
متن کاملDiscovery of osmosensitive transcriptional regulation of human cytochrome P450 3As by the tonicity-responsive enhancer binding protein (nuclear factor of activated T cells 5).
We report the discovery of an osmosensitive transcriptional control of human CYP3A4, CYP3A7, and CYP3A5. Ambient hypertonicity (350-450 mOsmol/kg) increased mRNA expressions of the CYP3A by approximately 10- to 20-fold in human-intestinal C(2)bbe1 cells, followed by an increase of CYP3A protein. Hypotonicity, on the other hand, suppressed CYP3A mRNA levels, indicating that physiological isotoni...
متن کاملRegulation of TonEBP transcriptional activator in MDCK cells following changes in ambient tonicity.
In response to ambient hypertonicity, TonEBP (tonicity-responsive enhancer binding protein) stimulates certain genes including those encoding cytokines, transporters for organic solutes, and a molecular chaperone. TonEBP is regulated in a bidirectional manner, upregulated by an increase in ambient tonicity while downregulated by a decrease. To investigate the role of intracellular ionic strengt...
متن کاملMononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats.
We showed recently that mononuclear phagocyte system (MPS) cells provide a buffering mechanism for salt-sensitive hypertension by driving interstitial lymphangiogenesis, modulating interstitial Na(+) clearance, and increasing endothelial NO synthase protein expression in response to very high dietary salt via a tonicity-responsive enhancer binding protein/vascular endothelial growth factor C re...
متن کامل